Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake.
نویسندگان
چکیده
The ability for the brain to sense peripheral fuel availability is mainly accomplished within the hypothalamus, which detects ongoing systemic nutrients and adjusts food intake and peripheral metabolism as needed. Here, we hypothesized that mitochondrial reactive oxygen species (ROS) could trigger sensing of nutrients within the hypothalamus. For this purpose, we induced acute hypertriglyceridemia in rats and examined the function of mitochondria in the hypothalamus. Hypertriglyceridemia led to a rapid increase in the mitochondrial respiration in the ventral hypothalamus together with a transient production of ROS. Cerebral inhibition of fatty acids-CoA mitochondrial uptake prevented the hypertriglyceridemia-stimulated ROS production, indicating that ROS derived from mitochondrial metabolism. The hypertriglyceridemia-stimulated ROS production was associated with change in the intracellular redox state without any noxious cytotoxic effects, suggesting that ROS function acutely as signaling molecules. Moreover, cerebral inhibition of hypertriglyceridemia-stimulated ROS production fully abolished the satiety related to the hypertriglyceridemia, suggesting that hypothalamic ROS production was required to restrain food intake during hypertriglyceridemia. Finally, we found that fasting disrupted the hypertriglyceridemia-stimulated ROS production, indicating that the redox mechanism of brain nutrient sensing could be modulated under physiological conditions. Altogether, these findings support the role of mitochondrial ROS as molecular actors implied in brain nutrient sensing.
منابع مشابه
The role of nitric oxide signaling in food intake; insights from the inner mitochondrial membrane peptidase 2 mutant mice☆
Reactive oxygen species have been implicated in feeding control through involvement in brain lipid sensing, and regulating NPY/AgRP and pro-opiomelanocortin (POMC) neurons, although the underlying mechanisms are unclear. Nitric oxide is a signaling molecule in neurons and it stimulates feeding in many species. Whether reactive oxygen species affect feeding through interaction with nitric oxide ...
متن کاملنقش استرس اکسیداتیو در تکثیر بیرویه و مرگ سلولی
Abstract During normal cellular activities Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) are produced. In addition to beneficial functions they play a critical role in cell death and prevent apoptosis. Every cell is equipped with an extensive antioxidant defense system to combat the excessive production of active radicals. Oxidative stress occurs with destruction of cellu...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملImpact of Reactive Oxygen Species on Spermatozoa: ABalancing Act between Beneficial and Detrimental Effects
Reactive oxygen species (ROS)plays an important role in sperm motility. The physiological generation at low concentration induces beneficial effects on sperm functions and plays a significant role in sperm metabolism. Meanwhile, the excessive generation of reactive oxygen species can overwhelm protective mechanism and triggers changes in lipid and protein layers of sperm plasma membrane, which ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 56 1 شماره
صفحات -
تاریخ انتشار 2007